

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2003 question papers

0606 ADDITIONAL MATHEMATICS								
0606/01	Paper 1, maximum raw mark 80							
0606/02	Paper 2, maximum raw mark 80							

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0606 (Additional Mathematics) in the November 2003 examination.

	maximum	minimum mark required for grade:			
	mark available	А	С	Е	
Component 1	80	63	31	21	
Component 2	80	67	36	26	

Grade A* does not exist at the level of an individual component.

		m	n. m
Page 1	Mark Scheme	Syllabus	Mynains
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606	Ath, ns
Scheme Note			Scloud.com
aulia ana afith.	a fallouring three turned.		

Mark Scheme Notes

- Marks are of the following three types:
 - Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.
- The following abbreviations may be used in a mark scheme or used on the scripts:
 - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
 - Correct Answer Only (emphasising that no "follow through" from a CAO previous error is allowed)
 - ISW Ignore Subsequent Working
 - MR Misread
 - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 - SOS See Other Solution (the candidate makes a better attempt at the same question)

		www.m.	Mainsciout.com
Page 2	Mark Scheme	Syllabus	No Mar
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606	ath is
			°Cloud
	Penalties		SOM

Penalties

- MR –1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted. •
- This is deducted from A or B marks in the case of premature PA –1 approximation.
- S –1 Occasionally used for persistent slackness.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation.

CAMBRIDGE INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/01

ADDITIONAL MATHEMATICS Paper 1

UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

		mm	4
Page 1 Mark Sch		Syllabus Paper	Math D
IGCSE EXAMINATIONS	– NOVEME	3ER 2003 0606 1	ATTYSCI S
1. $x + 3y = k \text{ and } y^2 = 2x + 3$ Elimination of x or y $\rightarrow y^2 + 6y - (2k+3) = 0 \text{ or}$ $\rightarrow x^2 - (2k + 18)x + (k^2 - 27) = 0$	M1 A1	x or y must go completely, but allow for simple arithmetic or numeric slips co	Mainscioud.com
Uses $b^2 - 4ac$ $\rightarrow k < -6$	M1 A1 [4]		
2. $8^{-x} = 2^{-3x}$ $4^{\frac{1}{2}x} = 2^{x}$ Attempts to link powers of 2 $\rightarrow x -3 - (-3x) = 5 - (x)$ $\rightarrow x = 1.6 \text{ or } 8/5 \text{ etc}$	B1 B1 M1 A1	Wherever used Needs to use x ^a ÷x ^b =x ^{a-b} co	
[$\log 8^{-x} = -3x\log 2$, $\log 4^{\frac{1}{2}x} = x\log 2$ equate coefficients of log 2]	[4] [B1B1 M1A1]		
3. $x^3 + ax^2 + bx - 3$ Puts $x=3 \rightarrow 27+9a+3b-3=0$ Puts $x=-2 \rightarrow -8+4a-2b-3=15$ (9a+3b=-24 and 4a-2b=26)	M1A1 M1A1	Needs x=3 and =0 for M mark Needs x=-2 and =15 for M mark (A marks for unsimplified)	
Sim equations $\rightarrow a = 1$ and $b = -11$	A1 [5]	со	
4. $(\sqrt{3}-\sqrt{2})^2 = 5 - 2\sqrt{6}$ or $5-2\sqrt{2}\sqrt{3}$ Divides volume by length ² $4\sqrt{2} - 3\sqrt{3} = 5 + 2\sqrt{6}$	B1 M1	Co anywhere V÷l² used	
$\frac{4\sqrt{2} - 3\sqrt{3}}{5 - 2\sqrt{6}} \times \frac{5 + 2\sqrt{6}}{5 + 2\sqrt{6}}$	M1	× by denominator with sign changed	
Denominator = 1 Numerator = $20\sqrt{2}-15\sqrt{3}+8\sqrt{12}-6\sqrt{18}$ But $\sqrt{12} = 2\sqrt{3}$ and $\sqrt{18} = 3\sqrt{2}$	M1	Correct simplification somewhere with either of these	
$\rightarrow 2\sqrt{2} + \sqrt{3}$	A1 [5]	со	
5 y=0 when 3x + ¼π = π			
$\rightarrow x = \frac{1}{4}\pi$	B1	Co. Allow 45°	
$\int 6\sin(3x + \pi/4) dx = -6\cos(3x + \pi/4) \div 3$	M1 A2,1	Knows to integrate. Needs "cos". All correct, including \div 3, ×6 and \neg ve	
Between 0 and $\pi/4$ $\rightarrow 2 + \sqrt{2}$ or 3.41	DM1 A1 [6]	Uses limits correctly – must use x=0 In any form – at least 3sf	
6 Wind 50i− 70j V(still air) = 280i −40j			
 (i) Resultant velocity = v_{air} + w → 330i - 110j 	M1 A1	Connecting two vectors (allow -) Co (Could get these 2 marks in (ii))	
tan ⁻¹ (110/330) = 18.4° → Bearing of Q from P = 108°	DM1 A1	For use of tangent (330/110 ok) co	
 (ii) Resultant speed = √(330²+110²) Time = 273 ÷ resultant speed = 47 minutes 	M1 A1√	Use of Pythagoras with his components	
Scale drawings are ok.	[6]	For 273 ÷ √(a²+b²)	

© University of Cambridge Local Examinations Syndicate 2003

				www.p.	12					
Page 2 Mark Sch	je 2 Mark Scheme Syllabus Paper 47									
IGCSE EXAMINATIONS		3ER 2003	0606	1	ath ?s					
					····C/0.					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B2,1,0	Wherever 3 m column matrice – independent compatible for	es – as 3 by t of whether t	they are	My Mains Rainscloud.com					
$= (7.3 \ 5.9 \ 5.2 \ 4.4) \times \begin{pmatrix} 40\\ 50\\ 50\\ 60 \end{pmatrix}$	M1 A1	Correct metho the 3 - co for A		ying any 2 of						
or $(0.6 \ 0.2 \ 0.5) \times \begin{pmatrix} 1220\\ 670\\ 490 \end{pmatrix}$	M1	Correct metho		-						
→ \$1111	B1 [6]	Co – even if fro	om arithmeti	C.						
8 (i) d/dx(lnx) = 1/x	B1	Anywhere, eve	en if not used	d in "u/v"						
$\frac{dy}{dx} = \frac{(2x+3) \times \frac{1}{x} - (\ln x) \times 2}{(2x+3)^2}$ (ii) $\delta y = (dy/dx) \times \delta x = 0.2p$	M1A1√	Uses correct fo use product fo unsimplified.								
(ii) $dy/dt = dy/dx \times dx/dt$	M1A1 M1	-	Allow if δy mixed with dy/dt. M mark given for algebraic dy/dx \times p.							
$\rightarrow dx/dt = 0.6$	A1√ [7]	Allow if dy/dt n $\sqrt{12 \text{ for } 0.12 \div \text{ his}}$ $\delta x \text{ etc}$								
9 (a) Uses sec ² x = 1+tan ² x \rightarrow quad in sec or \times c ² then uses s ² +c ² =1 \rightarrow quad in cos \rightarrow 4sec ² x+8secx-5=0 \rightarrow -5cos ² x+8cosx+4=0 \rightarrow secx = -2.5 (or0.5) or cosx=-0.4 (or2) \rightarrow x = 113.6° or 246.4°	B1 M1 A1A1√	Co. Sets to 0 and u solution of a 3 cos. A1 co. A1√ fc	term quadra	atic in sec or						
(b) $tan(2y+1) = 16/5 = 3.2$ Basic angle associated with $3.2 = 1.27$ Next angle = $\pi + 1.27$ and $2\pi + 1.27$ (Value - 1) $\div 2 \rightarrow 3.28$ (others are 0.134 and 1.705)	B1 M1 M1A1 [8]	Anywhere (allo Realising the r 2π Correct order u any correct val are given, prov (degrees – ma	need to add o used ie −1, ti ilue. Allow if a viding none a	hen ÷2 for all 3 values are over 4.						

Page 3	Mark Scl	neme		Syllabus	Paper
uge e	IGCSE EXAMINATIONS		BER 2003	0606	1
f(x) = 5-3e	½x				
i) Range is	s <5	B1	Allow ≤ or <		Mun my Paper 1
	$= 0 \rightarrow e^{\frac{1}{2}x} = \frac{5}{3}$ r calculator $\rightarrow x = 1.02$	M1A1	Normally 2,0 ł get M1 if appr		
(iii)	(1.02, 0) and (0, 2)	B1 B1√	Shape in 1 st q Both shown o		tatement.
(iv) $e^{\frac{1}{2}x} = (5)^{\frac{1}{2}}$ x/2 = lr f ¹ (x) =	5 - y)÷3 n[(5-y)/3] 2In[(5-x)/3]	M1 M1 A1	Reasonable att Using logs. All ok, includir	·	-
		[8]			
	(i) y=½x and y=3x-15 → C(6,3)	M1 A1	Soln of simulta Co (or step m	•	ne first)
	OB=OC+CB	M1	Vectors, step	or soln of y=!	∕₂x+5 and
	→ B(8,9)	A1√	y=3x-15 From his C		
	m of AD = −2 −6=−2(x−2) or y=−2x+10	M1 A1	use of m1m2= Co – unsimpli	• • •	o to y=3x)
n of y=½x a	and eqn of AD \rightarrow D(4,2)	M1A1	Sol of simulta	neous eqns.	co.
	= $\sqrt{45}$, OA = $\sqrt{40}$ DABC = $2(\sqrt{45} + \sqrt{40})$	M1 M1 A1	Once. Adding OA,A Co.	B,BC,CO	
		[11]			
	πr + 2x + 2(5r/4) = ½(125 − πr − 5r/2)	M1 A1	Attempt at 4/5 Co.	lengths.	
	h = 3r/4	M1	Anywhere in t independent c	of any other w	vorking
	$gle = \frac{1}{2} \times 2r \times 3r/4 = 3r^2/4$	M1	Use of ½bh w		ion of r
= ½πr² + 2 = 125r − ½	2rx + ⁄2πr² -7r²/4	B1 A1	Correct ½πr² Answer given		tuitous ans.
i) dA/c	dr = 125 – πr –7r/2	M1A1	Any attempt to	o differentiate	. Co.
Solve	ed = 0 to give	DM1	Setting his dif	ferential to 0.	
→ r = 250	/ (2π + 7) or 18.8	A1	Any correct fo	rm.	
		[10]			

					mm.n	Nathscioud.com
Page 4	Mark Sc			Syllabus	Paper 4	A A A A A A A A A A A A A A A A A A A
	IGCSE EXAMINATIONS		BER 2003	0606	1	ather is
12 OR						
(i)	h / (12-r) = 30 / 12	M1	Use of similar lengths correc	•	needs ¾	.d.com
	\rightarrow h = 5(12-r) / 2	A1	Correct in any subject		ds h as	
	Uses V=πr²h to give	M1	Needs correct	formula		
	\rightarrow V = $\pi(30r^2 - 5r^3/2)$	A1	Beware fortuit	ous answers	s (AG)	
(ii) dV/dr =	= π(60r – 15r²/2)	M1A1	Any attempt to			
= 0 wł	hen r = 8 \rightarrow h = 10	DM1	Setting his dV/dr to 0 + attempt.			
\rightarrow V :	= 640π or 2010	A1	Correct to 3 or	r more sig fig	gures	
	ne of cone = ⅓π×12²×30 40π or 4520	M1	Anywhere			
Ratio	of 4 : 9 or 1 : 2.25 (3 sf)	A1 [10]	Exactly 4:9 or	2.25 to 3 sig	g figures	
DM1 for quadr	ratic equation					
Sets the Formut correct	ormula. he equation to 0 ula must be correct and stly used. one simple slips in sign.		(2) Factors Sets the equ Attempts to c Solves each	btain bracke		
]

CAMBRIDGE INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/02

ADDITIONAL MATHEMATICS Paper 2

				www.m	MAN ANSHIS MAN ANSHIS CIOUD COM
Pa	ge 1	Mark Scheme	Syllabus	Paper	no Math
		IGCSE EXAMINATIONS – NOVEMBER 2003	0606	2	+thsci
1 [4]		Eliminate x or y		M1	.049.C
		$\Rightarrow y^2 - 8y + 15 = 0$ $x^2 - 10x + 9 = 0$			ON
		Factorise or formula \Rightarrow (1, 3) and (9, 5)		DM1 A1	
		Midpoint is (5, 4)		B1 √	
2 [4]		$\cos \theta \left(\frac{1+\sin\theta-(1-\sin\theta)}{1-\sin^2\theta} = \cos\theta \left(\frac{2\sin\theta}{1-\sin^2\theta}\right) = \frac{2\sin\theta\cos\theta}{1-\sin^2\theta}$)	M1 A1	
		Use of Pythagoras $\Rightarrow \frac{2\sin\theta\cos\theta}{\cos^2\theta} = 2\tan\theta \Rightarrow k = 2$		B1 A1	
3 [4]		$\log_2 x = 2\log_4 x$ or $\log_4 (x - 4) = \frac{1}{2} \log_4 x$	$g_2(x-4)$	B1	
		$2\log_4 x - \log_4 (x - 4) = 2$ or $\log_2 x - \frac{1}{2} \log_2 (x - 4)$	4) = 2		
		Eliminate logs $\frac{x^2}{x-4} = 16$ or $\frac{x}{\sqrt{x-4}} = 4$		M1 A1	
		Solve for $x \implies x = 8$		A1	
4 [4]	(i)	2 DC		B2 B1 B1	
	(ii)	$A \cap B' \cap C'$			
	(iii)	$B \cup (A \cap C)$			
5 [5]	(i)	$243x^5 - 405x^4 + 270x^3$		B1 B1 B1	
	(ii)	Coefficient of $x^4 = (-405 \times 1) + (270 \times 2) = 135$		M1 A1	
6 [6]		At <i>B</i> , $v = 40$ ($e^{-t} - 0.1$) = 0 \Rightarrow $e^{-t} = 0.1 \Rightarrow$ t = ln 10	0 (=2.30)	M1 A1	
		$\int 40 (e^{-t} - 0.1) dt = 40 (-e^{-t} - 0.1t)$		M1 A1	
		$AB = \int_{0}^{\log 10} = 40 \left[\left(-\frac{1}{10} - \frac{\ln 10}{10} \right) - \left(-1 \right) \right] = 4(9 - \ln 10) \approx 26.8$		DM1 A1	

			Mun My Mains	
Pa	ge 2	Mark Scheme Syllabus IGCSE EXAMINATIONS – NOVEMBER 2003 0606	Paper Un	Maths .
		IGCSE EXAMINATIONS – NOVEMBER 2003 0606	?;	C/0.
7 [7]		Dealing with elements $\begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix}$ and $\begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}$	M1	SUCI.COM
		$\mathbf{A}^{-1} = -\frac{1}{2} \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} \qquad \mathbf{B}^{-1} = \frac{1}{8} \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}$	A1 A1	
	(i)	$\mathbf{C} = \mathbf{B} - 2\mathbf{A}^{-1} = \begin{pmatrix} 2 & 1 \\ -2 & 3 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -5 & 7 \end{pmatrix}$	M1 A1	
	(ii)	$\mathbf{D} = \mathbf{B}^{-1}\mathbf{A} = \frac{1}{8} \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 9 & 5 \\ 14 & 6 \end{pmatrix}$	M1 A1	
8 [7]	(i)	$\frac{10!}{6!4!} = \frac{10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4} = 210$	M1 A1	
	(ii)	No pink selected i.e. any 6 from (5 + 2) = 7	B1	
	(iii)	All selections contain at least 1 red		
		No yellow selected i.e. any 6 from $(3 + 5) = \frac{8!}{6!2!} = 28$	M1 A1	
		At least 1 of each colour – 120 – (7 + 28) = 175	M1 A1	
9 [8]	(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{4x-3}\right) = \left(4x-3\right)^{-\frac{1}{2}} \times \frac{1}{2} \times 4$	M1 A1	
		$\frac{\mathrm{d}}{\mathrm{d}x}\left\{(2x+3)\sqrt{4x-3}\right\} = \left(2x+3\right)\left(\frac{2}{\sqrt{4x-3}}\right) + 2\sqrt{4x-3}$	M1 A1 √	
		$=\frac{12x}{\sqrt{4x-3}} \Rightarrow k = 12$	A1	
	(ii)	$\int \frac{x}{\sqrt{4x-3}} \mathrm{d}x = (2x+3)\sqrt{4x-3} \times \frac{1}{12}$	M1 A1	
		$\int_{1}^{7} = \frac{1}{2} (85 - 5) = 6 \frac{2}{3}$	A1	
10 [10]		(i) ∠AOB = 19.2 + 16 = 1.2	M1 A1	
		(ii) $DE = 8 \sin 1.2 \approx 7.46$	M1 A1	
	16	(iii) $\angle DOE = \sin^{-1} (7.46 \div 16) \approx 0.485 (AG)$	M1 A1	
	/	c (iv) Sector $DOB = \frac{1}{2} \times 16^2 \times 0.485 = 62.08$	M1	
		Length $OE = \sqrt{(16^2 - 7.46^2)} \approx 14.2$	M1	
	* (M1	
		Shaded area $\approx 9.1 - 9.3$ (9.275)	A1	

										hun	2	MAN NSERS
Pa	ge 3				Mar	k Schen	ne		Syllabus	Paper	"Jyn	(A)
	3		IGCS	E EXA				BER 2003	0606	2	79	the ns
11 [10]	I	V	5	10	15	20	25	(i) Plotting lg R	againet la v	M1		Clour
11 [10]		V D								- 101	4 0	.O.CON
		R	32	96	180	290		Accuracy of poir	-		1, U	
		lg v	0.70		1.18	1.30	1.40	(ii) $R = kv^{\beta} \Rightarrow lg$	$gR = \lg k + \beta \lg$	_и В1		
		lg R	1.51	1.98	2.26	2.46	2.61	β = gradien	t ≈ 1.55 - 1.60	M1	A1	
						lg <i>k</i> =	= lg <i>R</i> i	ntercept \approx 0.4 =	⇒ <i>k</i> ≈ 2.4 - 2.6	6 M1	A1	
	(iii)	lg R :	= lg 75	≈ 1.8	$8 \Rightarrow \text{from}$	m grapł	h lg v ≈	= 0.92 - 0.96 ⇒ 1	v ≈ 8.3 - 9.1	M1	A1	
		[Or b	y solvi	ng e.g	., 75	= 2.5 <i>v</i> ¹	^{.58} or	1.88 = 0.4 +	1.58 lg <i>v</i>]			
12 EITHER [11]	(i)		=	. ,						B1		
		Solve	$=\frac{4}{4-32}$	<u>-</u> = 2		[or so	vlve fg($x)=3\left(\frac{4}{2-x}\right)-$	2 = 2]	M1		
		\Rightarrow x =	= 2/3							A1		
	(ii)	f(<i>x</i>) =	• g(x) =	⇒ 3 <i>x</i> –	$2 = \frac{2}{2}$	$\frac{1}{x} \Rightarrow 3$	גx ² – 8 א	x + 8 = 0				
		Discr	iminar	nt = 64	- 96 <	0	\Rightarrow	No real roo	ots	M1	A1	
	(iii)									B1		
		<i>y</i> = 4	/ (2 –	<i>x</i>)	\Rightarrow	x = 2 - 4	4/y	\Rightarrow g ⁻¹ : x \mapsto	→ 2 – 4/x	M1	A1	
	(iv)	/	/	1	1/1-1		•			B1	B1	
			1	X				Lines inte	rsect at (1, 1)	B1		

				mm	My Naths Inscioud.com
Pa	ge 4	Mark Scheme	Syllabus	Paper 47.	(Martin)
		IGCSE EXAMINATIONS – NOVEMBER 2003	0606	2	The second
					COUR
12 OR [11]	(i)	$1 - x^2 + 6x \equiv a - (x + b)^2 \equiv a - x^2 - 2bx - b^2 \Rightarrow a - b^2 \equiv$	1 and – 2 <i>b</i>	= 6 M1 A1	.com
		[or $1 - x^2 + 6x \equiv 1 - (x^2 - 6x) \equiv 1 - \{(x - 3)^2 - 9\}$]			
		\Rightarrow b = -3, a = 10		A1	
	(ii)	$1 - x^2 + 6x \equiv 10 - (x - 3)^2 \implies \text{Maximum at } (3, 10)$			
		∴ Single-valued for $x \ge 3$ and hence for $x \ge 4$		M1 A1	
	(iii)	$y = 10 - (x - 3)^2 \implies (x - 3)^2 = 10 - y \implies x - 3$	3 = √ (10 –	x) M1	
		$\Rightarrow f^{-1}: x \mapsto 3 + \sqrt{(10 - x)}$		A1	
	(iv)	When $x = 2$, $g(x) = 9$ and when $x = 7$, $g(x) = -6$	B1		
		Range of g is $-6 \le g \le 10$	B1		
	(v)			B 2, 1, 0	